- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
- 紫外光(ultraviolet light)
- 准直光束(collimated beams)
- 中性密度滤光片(neutral density filters)
- 直径发散角乘积(diameter-divergence product)
- 折射率(refractive index)
- 折射(Refraction)
- 衍射极限光束(diffraction-limited beams)
- 衍射光栅(diffraction gratings)
- 谐振腔模式(resonator modes)
- 消色差光学(achromatic optics)
- 相干时间(coherence time)
- 相干(coherence)
- 透镜(lenses)
- 瞬时频率(instantaneous frequency)
- 双折射(birefringence)
- 束腰(beam waist)
- 梳状滤波器(rugate filters)
- 失真棱镜对(anamorphic prism pairs)
- 色散(dispersion)
- 色散(chromatic dispersion)
- 色差(chromatic aberrations)
- 散斑(Speckle)
- 瑞利长度(Rayleigh length)
- 瑞利散射(Rayleigh scattering)
- 群速度折射率(group index)
- 群速度色散(group velocity dispersion)
- 群速度(group velocity)
- 群时延色散(group delay dispersion)
- 群时延(group delay)
- 腔(Cavities)
- 平顶光束(flat-top beams)
- 偏振片(polarizers)
- 偏振拍长(polarization beat length)
- 偏振合束(polarization beam combining)
- 模式匹配(mode matching) 定义:
- 模式(modes)
- 亮度(Brightness)
- 棱镜(prisms)
- 数值孔径(numerical aperture)
- 焦距(focal length)
- 激光辐射的偏振(polarization of laser emission)
- 激光光束(laser beams)
- 回波损耗(return loss)
- 红外光(infrared light)
- 光子(photons)
- 光学密度(optical density)
- 光学厚度(optical thickness)
- 光通量(fluence)
- 光速(velocity of light)
- 光束质量(beam quality)
- 光束发散角(beam divergence)
- 光束参量乘积(beam parameter product)
- 光束半径(beam radius)
- 光强度(optical intensity)
- 光谱仪(spectrometers)
- 光谱(optical spectrum)
- 古依相移(Gouy phase shift)
- 高斯光束(Gaussian beams)
- 高阶模式(higher-order modes)
- 分束器(beam splitters)
- 菲涅尔方程(Fresnel equations)
- 反射镜(mirrors)
- 法拉第旋光器(Faraday rotators)
- 法拉第隔离器(Faraday isolators)
- 厄米高斯模式(Hermite-Gaussian modes)
- 超光速传输(superluminal transmission)
- 插入损耗(insertion loss)
- 布儒斯特窗(Brewster windows)
- 布拉格光栅(Bragg gratings)
- 不稳定谐振腔(unstable resonators)
- 波数(wavenumber)
- 波矢(wave vector)
- 波片(waveplates)
- 薄膜偏振片(thin-film polarizers)
- 傍轴近似(paraxial approximation)
- Sellmeier公式(Sellmeier formula)
- Kramers-Kronig关系(Kramers–Kronig relations)
- ABCD矩阵(ABCD matrix)
- 色散(dispersion)
- 色散(chromatic dispersion)
双折射现象或者介质折射率与偏振有关。
文献中,双折射通常包含两种不同的含义。经典光学中,就是下面所说的双折射(double refraction)。
而在非线性光学和激光器技术中,双折射则是一些非各向同性透明介质的折射率依赖于偏振方向(即电场方向)的性质。后者的性质时非偏振光束入射到该材料上时产生双折射。
折射率依赖于偏振态的结果
折射率依赖于偏振态会产生下面的一些效应:
- 当光束在双折射晶体表面发生折射是,折射角与偏振方向有关。这样非偏振光束在非垂直入射到材料中的情况下分为两个线性偏振的光(双折射)。当非偏振光射向一个物体,如果采用双折射晶体看该物体,会出现两个像。
- 当线偏振激光光束在双折射晶体中传输时,如果偏振方向与双折射轴不重合,这时会包含两个方向具有不同波数的偏振部分。因此,在传输过程中,由于两偏振分量之间存在相对相位变化,于是偏振状态发生变化。
- 这一效应可应用于双折射调谐器中,因为它是与波长相关的(尽管折射率差与波长无关)。该效应通过自相位调制和交叉相位调制而与功率相关(参阅非线性偏振态旋转),有时用于光纤激光器中的被动锁模。
- 类似的,激光光束在存在热效应诱导的双折射效应的激光器晶体中传输时,偏振态也发生变化。这一变化与位置有关,因为双折射轴方向是变化的(例如,通常是轴向变化)。这一变化(与激光器谐振腔中的偏振光元件结合)是去极化损耗的来源。
- 非线性晶体材料的双折射可以实现非线性作用时的双折射相位匹配。
双折射举例
在激光器技术和非线性光学中,双折射现象通常发生在非各向同性晶体中:
- 一些激光器晶体(例如,钒酸盐晶体和钨酸盐晶体)本身就具有双折射。这在需要无去极化损耗的线偏振输出时非常有用。
- 所有用于非线性频率转换的非线性晶体都存在双折射。
- 双折射晶体通常用来制作偏振器。
- 尽管光纤本身不具有双折射,光纤光学中常常遇到双折射效应:有时双折射来自于光纤弯曲(引起弯曲损耗)和随机扰动。并且还存在保偏光纤。
弯曲光纤中也存在类似的效应,由于激光器晶体中的热效应,会产生去极化损耗。
直光纤只有很小的随机双折射,即使这样其中的光传输一段距离后偏振状态也会发生变化。存在保偏光纤,是利用了很强的双折射来抑制这些效应。
定量描述双折射
可以采用下列方法定量描述双折射的大小:
- 对于晶体,可以考虑量偏振方向的折射率差值。
- 光纤和其它波导中,采用有效折射率差值描述更好。这与传播常数虚部的差值直接相关。
































































































































































